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ABSTRACT

Integral formulas are derived for the pressure correlation and mean square fluctuating pressure
(pz>TM owing to the interaction of shear layers (i.e., planes of high mean shear sepa-

rating regions of uniform, but different, mean velocity) with turbulence. Results for a single

~'shear layer, assuming isotropic turbulence, indicate that in the far field (i.e., at distances

from the shear layer large in cc.aparison with the correlation length of the turbulence)
<p2>TM c'scays as the inverse fourth power of distance from the shear layer. Departure from
isotropy, for a given mean kinetic energy of the turbulence, decreases the near field value
of (pz)TM , but increases the far field value. For the double shear layer it is shown that

if the distance beiween the shear layers is large in comparison with the correlation length
of the turbulence, the resulting value of (pz)TM is o superposition of the effects of the shear
layers acting independently. Otherwise, interaction between the shear layers must be con-
sidered. These results are used to obtain order-of -magnitude estimates for the mean square
wall pressure fluctuations in a turbulent boundary layer. These estimates show reasonably

close agreement with other published results.
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1.0

INTRODUCTION

The problem of pressure fluctuations in homogeneous, isotropic turbulence was

first considered by !'!eisenberg] and Bafchelor2. The effect of turbulence-mean
flow interactions on turi:ulenf pressure fluctuations was first studied by Kraichnans,
who considered the interaction between a uniform mean shear and homogeneous,
isotropic turbulence, and < ompared the results to the effects of "turbulence-

4:3,6,7 have been concerned

turbulence" interaction. Subsequent investigations
mainly with pressure fluctuations owing to boundary layer turbuience. The
results of the work on boundary layer flows indicate that it is the turbulence-

mean shear interaction which gives the major contribution to the pressure fluc-

tuations.

In the theoretical analysis which follows, the problem of pressure fluctuations
owing to the presence of skear layers in homogeneous turbulence is considered,
with emphasis on the turbulence-mean shear contribution. The shear layers are
taken to be planes of high mean shear which separate regions of uniform. but
different, mean velocity. Flow conditions which can be approximated by one or
more shear layers are found in the region immediately downstream from a rear-
ward facing step in channel flow, the region near the exit of a jet, the immediate
downstream area in the wake of a projectile, and in a boundary layer. Also, areas
of strong wind shear separating adjacent regions of greatly differing wind velocity
are frequently found in the atmosphere, and are usually associated with

significant atmospheric turbulence.
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In the following sections the formulas for the pressure correlation and the mean
square fluctuating pressure owing to turbulence-mean shear interaction are derived,
and are applied to the case of the single shear layer, and also to the case of the
double shear layer. The effect of anisotropy of the turbulence is discussed. In

the final section it is shown how the results obtained here can be used to give rough
order-of -magnitude estimates of the wall pressure fluctuations in a turbulent boundary

layer.
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2.0 GENERAL THEORY - SINGLE SHEAR LAYER
The motion of an incompressible viscous fluid is governed by the Navier-Stokes

equations:

Bt R | 13 _ .2

at + uj axj * P 3xi =vv Yi (2.1)
aui
- 0. (2.2

where v, is the velocity, p the pressure, p the density, v the coefficient of

viscosity of the fluid, and x;, t are the space and time variablzs, respectively.

Here the indices i and j range cver the valves 1,2,3, and, in the usual tensor

notation, a repeated index indicates a summation over that index. Dif‘arentiating

Equation (2.1) with respect to o and using (2.2), we obtain the equation for

the pressure in terms of the velocity :

vp = -p af:axj (uiuj). (2.3

If we now write the pressure and velocity as the sum of mean ‘and fluctuating

parts, i.e.,

[
.
]

u +79 |,
i i
(2.4
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where

U, = (ui>

P = <

are the mean quantities (th - brackets () indicate an ensemble average or, sin ::
we are considering a process which is stationary in time, an equivalent time

average) . Substituting (2.4) into (2.3) we obtain

2 2~ - - az ~ A~y .
piP+pe R = - p _a";a"j [Uin +2Uiuj +uiuj] (2.5)

Taking the mean of both sides of (2.5), and noting that the mean of any fluc-

tuating quantity is zero, we obtain the equation for the mean press.re:

2 & ~
P=-p z==]|UU, + (0.7, ] ’ (2.6)
v P axi axJ [ i <, j>
where we have assumed that the process of differentiation and taking the mean
commute. Subtracting (2.6) frem (2.5) yields the equation for the fluctuating

pressure:

~ _ 32 ~ ~ ~
7F=-p g;‘a'x—j[ZUiuj + uiuj '(uiuj)]' (2.7)

We now drop the tilde notation, and for the remainder of the paper the symbols p

and v, will denote fluctuating pressure and velocity, respectively. Equation

(2.7) then becomes

At WA < T M S, §m o B R S aa Ao N
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V2 p=-p 5"_,? [ZUiuj + uguj - (uiuj)] . (2.8
Now the equation
7'p = - pf(X),

where f{x") decays to zero sufficiently rapidly at co, has the solution

- C{(y) ,—
PO = St

x~yl

where dy = dy, dy, dy3 and the integral is taken over all space. Hers, 3nd

in the notation which follows, a sy« denoting a vector quantity is writhe
with :he arrow above, while the same symbol without the arrow derote- *

length of the vector, ¢.g.,

—
X

= (x|l le x3)

X
It

6+ + )t

Also, sometimes (xz‘ + x: + x: )’l' is written as [x"| .) Then, assuming the :

turbulent velocity is zero outside some finite region, the solution to (2.8) is




p(x1) = —P- aazay [2U(y Ju.(¥ot) +u, (y,’)u (y7t) =<v, (Y,f)u 28 >]

|7 dy (2.9)

It follows from (2.9) thot

2 aZ
oy — P -lu .
pG; 1) pl', 1Y) = ” _/:/aY;an [2Uiuj + v, uj 4 iuj>]

aZ
dy

ay [. [2Uku + vy Ul (UkU[>:||x Y' -y l dy dy, (2.10)

where u, = ui(-f,t), u; = ui(_y' 't'), etc., and the indices k, / range over the
valves 1,2, 3. Taking the mean of both sides of (2.10), and reglecting third

Jrder means (see Botchelor2 for a discussion of this point) we obtain

LAV —ff: <ay AL bvry (u' Lop> +

£l
< (uu} (u ”t> <y - (kut')}'
%%, aYaY By,

I<-7| "lr'-;" |'l dy dy™ . (2.17)

o g G

Utilizing the fact that the mean and fluctuating velocities each satisfy the con-

tinuity equation, and taking the ditferentiation outside the brackets, (2.11) can
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be written

- aU aU' ?
<plt) plxt)) = /f v, ulf) +
]61r l i

i oy oy
a4
aYlaYJa)':(a)'i ((uuu (uu > (v ul))}
%7 -7 oy ay

(2.12

The first term in the integrand on the right-hand side of (2.12) represents the

contribution to the pressure correlation due to the interaction of the turbulence

with the mean flow, while the second term gives the contribution due to the

turbulence-turbulence interaction. Denoting these terms by ¢p(X; f)p(?',f'))m

and {p(X,1) p(?(",t'))tT , respectively we have
<p(x 1) (X7, 1)) = p(x, 1) p(?""»rm + p(x, D p(x", ¢t '))n

where

<P(rl ) P(-’-‘.l rfl)s?M =

ﬂau i (TY) _’-—"| I"' 'rld_'d'”
W o My.ﬂt il

and

(2.13
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PN (X1 =
¢ // 2 ((uuu'u')-(uu)(u'u'))}.
16 42 a)’;anaYLaYi ijk1 TN 0 4

Feal e -yi dydy - (2.14)

The turbulence-turbulence term (2. 14) has keen examined in detail by
Kroichnon3 for the case of isotropic turbulence. Kraichnar, in the sc;me paper,
also ccensidered the turbulence-mean flow term (2.13) for the case of a uniform
mean shear superimposed on isotropic turbulence. In the present work we shall
cbnsider the turbuience-mean flow term when the mean shear, instead of being
uniform, is confined to one or more planes in three-dimensional space, these
planes separating regions of different, but uniform, mean velocity. These planes

are then the shear planes, or sheor layers.

We consider first the case of the single shear layer, which we assume to be
coincident with the plane X = 0, and which separates semi-infinite regions of
uniform mean velocity Vo ond V,, respectively, in the x  direction. The mean

velocity profile for this case can then be written
Ub) = Yo + (V, = V) Hixy)

where H denotes the Heaviside unitary function, i.e.,



[ e LRI
f '

~ SNEDY sty
. i ‘ .

ooy |

0 for x3<l
Hix,) =
lforx3 > 1

Differentiating with respect to x, we obtoin the mean shear:

W,

T = V- V) 86, (2.19

where 5(x3) refers to the Dirac delta function. Substituting (2. 15) into (2.13)
and integrating with respect to the X, and x:; variables, we obtain the integral

fermula for the pressure correlation owing to the interacticn of the turbulence

with the shear layer:

PRI BT, = :';. V, - Vo ¥ / f

? -1 -1
e P oy B
3q| aq;

47 dv (2.16)

where Rij(y,y') denotes the velocity correlation (ui(y) vy, = (yl Y00,
J

= (y; Yy ,0), and d7y = dn,dr,. (We have nere suppressed the time

variable by setting t = t'.) The right-hand side of (2. 16) may be integrated

by parts to yield

ERPEY = L\ @) o= [Tml L] e
W 4 /fR”'M an, 171 an! Thoenem

(2.17)

v =



yo
2 San—
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|

e

where we have here set V= |V, - Vol .

If the turbulence is homoge.ieous (i.e., Rss k” n-1", (2.17) can be written

ot 3 ey = e O e o) e
<E) D, = I;T\Ff'a?lx S /Raaﬁi'-n')gﬂ’('ng R d7,

or, letting $= 7= ',

2 -1 - —-— -] "
PR = £ v’fil-x'--a'-l fwc;%k-c:ﬁ-l P
™ 4t ax; 1

Pz 2. ?a C"I = g
;;;.fo’%a”ax R R R

H

& 2 o [ 2= ==y €
£ v/ Ru(l:)/xllx-C-ﬂ —| 'l dndé. (2.19)
w 9,

N . - - [} l- ]
]

ESI L MR ECTL N

so that (2. 18) can be written, dfter setting & =7,

xp =& -€, x-§
&) p(X,, = V’/ R”(g)fl : I_.|3d§d§ (2.19)

-_ g I--.

10
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Setting X = X' =(0,9,h) in (2.19) we obtain the formula for the mean square fluc-
tuating pressure due to turbulence-mean shear interaction at a distance h from

the shear layer, whici: we denote by (p2 (l'\))TM , in the form

- £ £+ & -
CALRY =-”fv’f (C)/ —ar— d¢d$-

(2.20)

The £ imegration of Equation (2.20) is carried out in Appendix A. Substituting
that result (Equation (A16)) into (2.20) we obtain

-—

W = @07 ¢V Ra,(o{u-ﬁ?/c’) [1-<1+§2/‘4h2>"] +

3/2 -
(ﬁﬂ#m+fﬂ¥)/}d§. (2.21)

We now apply the above results to the case when the turbulence is isotropic.

The velocity correlation for this case can be written, following Botchelora,

Rijm = v [—;-r(Sij - rirj /rz) f'(r) + Sijf(r)] L

where V¥ is the mean square of any turbulent velocity component, f(r) is the
longitudinal velocity correlation coefficient for the turbulence, and sij is the

Kronecker delta. Then

Rt = Ry (§,,5,00= V [f(t) + ;—Cf'(t)] : (2.22)

11
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Substituting (2.22) into (2.21) and letting ¢ denote the angle between the vectes

(c.‘l,@? ) and the C‘ oxis, we have

1 ®p2n -2 1 ‘
J(2) < (2n) szz"z// ¢ [f(§)+‘2'(>f‘(§):|l(l-2ccsz¢).

0 o

[1 -1+ gz/zz)'-l] V(2,220 ¢ 8227 coschlﬁdq;dﬁ,
(2.23)

where we have, for convenience, introduced the notation

z = 2h and J(z) = ¢p? (h))'M i (z/2))IM . Integrating first with respect to ¢

gives

L2222 f% 2,.2,-3/2 12
J@) = 7p v Vo2 f (1+ 8 /2%) [&f(§)+?§ f'(C)]dC- {2.24)

0

Noting that
CF(d) + %? (5 = a‘di;' [-;— g2 f(C)] '

the right hand side of Equation (2.24) can be integrated by parts to yield

Q0
o) = Ft v vzz“f g2+ 8272 gy, (2.25)
0

12
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which can be re=written in the form

@ -
J(2) = %p’v"v’zf g3 (82 +22) ¥ £(8)dt . (2.26)
0
We define
(e o} -
12) = Zf Bz ) ityat (2.27)
0

so that 1(z) is essentially a normalized mean-square pressure fluctuation. Making

the change of variable £ = zn , (2.27) can be written

-5 ;
i(2) =/m ns(l +|11) & fzn)dn; 2>0. {2.29)

0

Differentiating (2.28) with respect to z we obtain the formulas

e o] _5/2
I'(z) =f n4(1 + n?) f(zn)dn ;z >0, (2.29)
0
® -5/
I''(2) =/ (1 + qz) f'(zn)dn;z>0. (2.30)
0

Since (%) is @ non-increasing function of § we must have £'(§) < 0 for all g,

so that, by (2.29), 1'(z) <O for z >0. Integrating by parts in (2.30) we have

13
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(g g e

:—*-«uhvn‘
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[P,
.

@
- -
I'(z) = - 52 ‘/ n4 (1 +n%) % f'(zn)dn; z>0,
0
so that [''(z) >0 for z>0. Also,letting z - 0 in(2.28), f(zn)— f(0) = 1

for all n>0, so that, carrying out the integration, we cbtain 1(0) = -g-; i.e.,
since J(z) = %pf‘"vzv2 I(z),

Oy =gAVIS (2.31

Note that we cannot obtain I'(0) and I''(0) by a similar limiting process, since
the functions n*(1 + nz)-s/2 and nd(1+ n2)~5/z are not integrable on the
interval 0<n < + ®; however, it can be shown, assuming £'(0) =0, that

I'(2) and-l”(z) approach finite limits as z — 0. Also, it is clear, by writing

I(z) in the form

z) = z“fm 31 +§2/z2)'5/2 f(Hds, (2.32
0

that I(2) decays like z'-4 as z — ®; i.e., in the far field, the mean square
pressure fluctuation due to turbulence-mean shear interaction decays as the
inverse fourth power of distance from the shear layer. (The near and far fields
of the shear layer are defined according to whether the distance to the shear
layer is much iess than, or much greater than, the correlation iength of the
turbulence. This, of course, is not to be confused with the acoustic near and
f-. fields, since we are dealing here only with incompressible flows.) We can

then sketch, I{z) or, equivalently, ' (h)%M , as shown in Figure 1.

14
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Fig. 1. Normalized mean-iqucre pressure fluctuation due to turbulence-mean

shear interaction vs. distance from shear layer (isotropic turbulence).

We can obtain an asymptotic expression for (p2 (h))m for large h as follows:

We first take f(8) = & o , where o ! is the correlation length of the

turbulence. Substituting this into (2.32) we obtain

4

a
I(z) = z"f g3(1+822)7/2 ¢ & gt
0

which becomes, after a change of variable,

[+ 2]
I(z) =-;-(oz)“f u(l +u/e? 22)” /2 e’ du- (2.33

0
Now
5/2 o2 -5/2
f (]+u/02 2)" ‘U du =[ u(]+u/°_222)' e'U du +
0 0
L]
/ u(l +u/o2?) S/ - du . (2.34)
0222

Then, using a power series expansion, we can write

15




2.2 2.2
o' 2 s/ . ozt o _
/ o(1 +u/e?2) /ze Ydy =/ u\'!--g-u/ozzz +0(o 4z 4))e Yduy

0 o

-1
= 1+ { higher order terms in (0 2) §

It can easily be shown that the second term on the right hand side of (2.34)

|
involves only higher order terms in (0z) , so that, for large oz,

%(azf‘. (2.35)

w

(2)

Then since

Ll

G, = @) = VI IR,

we can write, after substituting for z = 2h,

Wy, T B AV (2.3

for oh large; i.e., for h large in comparison with the correlation length o the

turbulence.

& B Wi

W—n—-——nn—a——l——l——
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3.0

TURBULENCE WITH SCALE ANISOTROPY
We consider now the somewhat more realistic situation in which the turbulent
eddies are elongated in the direction of the mean flow. Following Kraichnan3,

we introduce the anisotropic velocity correlation function

6. &,
Yo tadlR (@718 L8, (3.1)

(o) 2 _ -
R (,5.8) = 32+ d NCRY

14 2 ’
where o> 1 is the anisotropic scale factor and Rij(?) corresponds o isotropic

turbulence. It can easily be shown that Rg}’)(-{) satisfies

BRE?) (%) (a)

FEJ_ = 0 ; also that Ri’ (_f) corresponds to a turbulent flow in which
j J

the mean kinetic energy density is the same os that for isotropic case, and also

a flow in which the correlation length is stretched by a factor « in the cl

direction,

Now since Rij(-g) corresponds to isotropic turbulence, we can write
=~ _ 2 L 1 -
() = [ - 58/ F 6 +e 6] (5.2
Then substituting Equation (3.2) into (3. 1) we obtain
RIE,E,0 = 32+a) [.,}(cz_ f(,z)’f'((cz -pL? ))*‘)+

,((,;z_ rch)%)], (3.3

17
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; -2
where yl = 1-a",and §%= Czl + ci . Letting ¢ be the angle between the

1

vector (Cl ,Cz) and the Cl axis, and defiring A = (1 - v? cos? ¢)? , Equation

(3.3) can be written .
R:E:)(cl’§2'0) = 3(2 +02)-iv2 [f()\C) + %)\c fl()\{)] 3 (34)

Substituting (3.4) into (2.21), and setting z = 2h as before, we obtain

J(c)(z) 3 [ / fA 8y + —)\§ f ()\C)] { (1 - 2cos? ).
2 a(2 +a2)

l] -(1+ Cz/'zz)-%] + (Cz 22)(] + tz/zz)_a/zcosztp}c_'d(;.dg,

(3.5)

w'iere J(a)(z) is the anisotropic counterpart of J(z). Noting that

1 :
Cf(A§)+-f)\C2f()\§) = dc[ czf(xt)]

we can use integration by parts on Equation (3.5) to chiain

290 = f -2cnsz¢){[l -(1+ cz/zz)-%] -
21.(2 +a2) ]

(§’/2z2)(1+§2/£)'3/2} ¢ 0y dlde +

18
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z A V2 m 2
2v / / cost o (1 + £2/2%) -/ Ef(Ag)dlde - (3.6
4n(2+ct)z?

Making the change of variable n = {/z, Equation (3.6) becomes

2.2 27 1 9
J(a)(Z) 3P Vv / / (]—2cos ¢ []-(]+q ) - —q (] +q) -3/ J
2n(2+

-1
n f(Azn)dnde -

2.2 2 2x -5/2
Sd A cm2¢[ﬂ3(1+nz) ]f(xzn)dndep- (3.7
47(2+ ™) A

Letting z — 0, in (3.7) we obtain

3dVV

W9 -
202+ o)

or, letting (pz(h))*(:) denote the mean square fluctuating pressure at a distance

h from the shear layer for the anisotropic case, we have

3

2+oz2

<&m@j= L 2y 2 (3.8)

Upan comparing this result with (2.31) we see that anisotropy results in a

reduction of mean square fluctuating pressure at the shear layer.

19
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In order to obtain for fieid resulits for J(a)(z) we first assume

2¢c2
HE) = &,

so that

_2y2¢2 24142 2
FINE) = e ot X & - e o (l-7 cosz¢)§
Using a procedure similar to one used previously (see Equations (2.33)-(2.35)),
the integrends of Equation (3.9) are expanded in powers of {/z and terms of

order (1/0zf and higher are discarded. Then after integrating with respect to

€, (3.6) becomes

2.2 x
J(a)(z) 4 % P \4 W 3 Zl‘ l + 2C°é 2" d¢ . (3.9)
ozt 2+ o ¥ Q Yzcoszo

The integral on the right hand side of Equation (3.9) can be integrated by

means of tables, with the result

2 .
e = 3 £V @) (3.10)

otzt

for ¢z large, where

3a(1+30%) .
42+ o?)

K(e) = (3.1)

[P




Since

PR RN ()
J(a)(z) = <P (h)>TM

Equation (3.10) can be put into the alternate form

<p’(h>>§:’ = l—:}g P:VZT“’Z K(e), (3.12)
g

for large oh, where h is the distance from the shear layer. This is to be

compared to the isotropic result (Equation (2.36)).

Note that K(a) is monotenically increasing with a, i.e., for mean kinetic

PRI

energy density fixed, the mean square pressure fluctuations due to turbulence-
mean flow interaction at large distances from the shear layer increases with .

increasing anisotropy of the turbulence.

PR
M Bl . st b

+

.
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4.0 DOUBLE SHEAR LAYER
It is appropriate here to consider the case of the double shear layer, since, as
will be seen, the effect of multipie shear layers on the mean square pressure
fluctuations is not a simple superposition of the effects of the individual shear

layers. Also, the results obtained here will be of use in the discussion of

boundary layer turbulence.

The symmetric double shear layer considered here is characterized by a region,
say |x,]< @ in x)- - x, space, in which the mean velocity is uniform and
is equal to V in the x, direction. This region separates two semi-infinite

regions in which the mean velocity is uniform and is equal to V, in the x, ;

direction. The planes x; = + a are then the shear planes.

The procedure is similar to that of Section 2. We first write the velocity

profile in the form

T it e S uan AL R 1A Ry Vs B 1y et Y

Ul(x.‘i) =V, + (V- V) H(xa +a) +(V,-V)) H(xa-a).
Differentiating, we obtain the mecn shear:

v, -
-a? = (Vl-Vo) [6(‘,'0) 'S(X:"'c)] ¢

Substituting the expression for the mean shear into Equation (2.13) we obtain

22
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. & Ry -, -1 -1
e, = on a, ALY ERE N I BN B

aan
_(" ; )“"_"
anan, " Ix I |>< '1+|

Ry

GO -7, | |3 | dndw’, (4.1)
on '
I

pemey ey Piinej PN GURN) e Peey ey D MOMANY G ey ey emaaw

(4,1) by parts yields

where
r‘ = (rlll rlz) 7
My = {1y, ny, 0,
-‘T‘_ = (rl‘l rlzl -d),
-ﬁ.' = (n'll ‘12')’
"i' = (n;, rlzl q)l
i W= (long -a, |
- and V. = |V,-V,| osbefore. Integrating the right hand side of '
i

23




[ althiiony Py ] ) A oy mnany iy [~ [ a—— o—— -—'-“
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! = p_. tY) - —— '“-n' -
<Pl (XN 2 ﬂ{Rﬂ(me 3n1|x A, 3n;'x n+|

RSE(-.i-'rl ) _i_; —'T+| l-" —’Tt.l -
— -, a — - -1 a —, =, -1
R33(1_,q+) a}—'x-nul 55—;',('-,1+ +

(4.2

If we assume now that the turbulence is homogeneous, we con make changes of
variables in (4.2) similar to those of Equations (2.17) - (2.19). Equation (4.2)

then becomes

PRGN, =

"l'c -§, =& -

.L_{/g(c)[ s = 3dxid‘;-
E' I"£+'

- ¢, -

[wf r._'s_ g'la o -

(..E -; §' Xi-g —_—
Real ) _-g EAACET dgds +
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/R /x"cg SR vy (4.3)
33 0 l_. _-E-|3 I—.-§|3 ’ :

? = (§,¢,0)

‘I 2' 4

where

T - (.8, 20),

Sy
[ (€, 5.-2a),
&, = (55,0,
o= (5,9,
I R
E o= (5.8
To obtain the formula for the mean square pressure at a distance h from the

Xps %, plane we set x =x ‘' =(0,0,h) in (4.3 with the result

GO

{/ c +C §| —~——
R( ) d&ds -
|~E+rl +(h- c.)2 3/2 [§2+(h-a)2]3/2

]
g A o =

e

- + & ¢ -
R (g)/ B i déd
/ 3 [[E+§F+(h-u)z]m [g’ +(h+a)z]3/2

25




L I T N e

. Wranig

ot
dédb +
3/2 [£2+(h-°)2]3/2

§+§|2+(h+°)2]

- ’5‘+§l §' .....l
/’Ss(c,,)/*__ — 0 - d¢d

[l £+ §|2+(h+ 0)2] [&z +(h+ a)z] ’

(4.9

In examining the four terms occurring on the right hand side of (4.4), it is seen
that the two terms involving Eo are of the same form as that of the single shear
lcver (Equation 2.20) and therufore give the contribution to (p2 (h)}M which
would be expected if the shear layers acted independently. The two terms
involving -C:_ and ?_ give the contribution to ¢p? (h))TM owing to the
correlation between the fluctuating pressure Jdue to one shear layer and the
fluctuating pressure due to the other shear layer. We s',hall refer to this effect
as interaction between the shear layers. Then, in general, the mean square
fluctuating pressure due to the interaction of turbulence with mean shear in
multiple shear layers is not a simple superposition of the contributions of the
shear layers acting independently. It is, however, clear from Equation (4.4
that if the distance between the shear layers is large in comparison with the
correlation®length of the turbulence, then the terms in (4.4) corresponding to
interaction between the shear layers can be neglected, since then R”(-E_") and

e e~

Ry(8.) will be small in comparison with Ry(§.). In this case <p'(R)  can
be considered as a superposition of the effects of the shear layers acting
independently.
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For the case in which the distance between shear layers is of the order of the
correlaiion length of the turbulence, the four _£. integrals occurring in (4. 4)
con be evaluated using the formula derived in Appendix A, We shall consider
here the case in wnich the distance from each of the shear layers to the point
» is large in comparison to the distance between the shear layers, 1.e.,

Ihl>>a. Then we can replace (h+ a)? by h? everywhere in (4.4) without

introducing significant error, and, using (A16), Equation (4.4) reduces to
1 [ > - e
(p’(h))m ¥ (29 p’v’j l_zan(co)-an( c;-a,_‘,(c_)] .

s"g(\- zc’,/ﬁ')[l-m’/w)‘*] .
(83,488)(1 + c'/u’)""z:a'{- (4.5

Note also that by substituting o for h on the right hond side of (4. 5), which
is equivalent to setting h = 0 in (4,4), we obtain the exact formuila F~r the

mean square fluctuating pressure at @ point midwoy between the shear layen.

Assuming that the turbuience is isotropic we can write

- 2 | .
Ro(8) = VH[RE)+ 3¢ (t)].

Ry(S) = Ry(T) J'ncg*-};,u-«‘/cw(m].

- L e -
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so that, letting b = 2a be the distance between the shear layers, (4.5) becomes

<y = v“pzvzvzf c‘z[f(m;—cmt:)]{(l-2C§/C2)[1 -
(1+ cz/4h2>"1’]+<c§/4h’m + 84 z}d“c’- n“pz\/’vZ/C'z[f<§+> +
-;-g (1-6%/82) f'(c+)] )(1 - 2c2,/c2>[1 -(1+ §2/4h2)"1’] +

(§2|/4h2)(l + §2/4h2)-3/2} de - (4.6

The first integrul on the right hand side of (4.6) is, except for a factor of two,
identical to one encountered previously (see Equations (2.23)<(2.25)), and so

we can write

- p’v’v’/c"[fm»f-;-cf'(n]{u-ch/c’)[l -(1+c’/4h’)'5] +

(¢ ¢}
(c’.m*)(uc’mz)'w}d'c'-- %p"’"z‘"/ ¢+ gt~ e)at,
¢
(4.7

whare, os before, z = 2h. Writing the second integral on the right hand side

of (4,6) in terms of polo- coordinates as in (2.23), ond corrying out the

integrotion with respect to the angular coordinate, we obtain




-

[r—

it s | hostarg by {4

n“p2v2v2/c'2[f<§+) + 58,00 bz/ciw(g] {(1 - 280 /8%) [l -
(1+ g2/4h2)"'2‘] + (§§/4h2)(] + g?/4h2)'3/2;d? =

[0}
VA / e[ rie, +%g(l-bz/ci)f-(c+)]<1+c2/z2>‘3/2 at -

0
Making a change of variable, we can write

Q

pzvzvzz—zf C[f({_,_)+% £, -bYed) f~(§+)](1+§2/zz)‘3/2 de =
0

@

~3/
p’vzvzz‘zf (10 +get- ][ -wn | s
b

Noting that
Yoz _2vepy - A1 p2 12

we can integrate by parts to obtain finclly
vy / ¢ [f(§+) + 28, (1- /%) mcg] {(1 -282 /¢%) [l -

) -
(1+ ;2/4h2)‘5J +(g2/4R2)(1+ §2/4h2)-3/2}d§ =
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a
3 avi 2t (- |1+ (g - R) /R -5’/2§ d¢
SVt ¢ - bt 2 FE) 4 (4.9
b

Substituting (4.7) and (4.8) into (4.4) we have

@
<Py = %F’ZVZ"ZZ_A%/ O gt -
0

®
f (Cz-bz)[1 +<c2—!.->2)/z21|’5/2 mc)dcg: (4.9)
A B

where we have assumed that |z| >> b. The first term on the right hand side of

(4.9) is just twice the mean square fluctuating pressure for the case of a single

shear layer coincident with ihe x, - x, plane, and gives the contribution to

(p2 (h))TM due to the cffects of the shear layers acting independently. The

second term gives the coni -ibution to (p2 (h))TM due tc interaction between the

shear layers. This term is negative, i.e., in this case interaction beiween the

shear layers tends to reduce the mean square pressure fluctuations.

As noted previously the exact formula for the mean square fluctuating pressure
at a point midwoy between the shear layer, i.e., for h =0, is obtained by

replacing h by a everywhere in the right hand side of (4.5}, i.e.,

EET TN N

-1 -~ - ~
< ©3,, =@n ¢ \F/[2R33(§0) - Ryy(8,) - R33(§-)]

B e S T TRT S A S

e

[
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{(1 - 2c1; /t%) [1 -1+ §2/402)-%] + (;f/4az)(1 + §2/4c.2)'3/2 c'zd'g’.
(4.10)

For isotropic turbulence then we obtain after replacing z by b everywhere in

(4 9)

@
<FOy :%pzvz»z{b/ e (c? + 1) 7 eyt -
0

[¢ o3
b/ 4 (e2- b)) £ () dc}- (4.11)
1 _

"Again we see thet intercction between the shear layers tends to reduce the

mean square fluctuating pressure.
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5.0

APPLICATION TO BOUNDARY LAYER TURBULENCE

The results of the preceding sections can be used to give rough order—of-
magnitude estimates for the mean square fiuctuating pressure owing to
turbulence-mean shear interaction in a turbulent boundary layer. The pro-
cedure is to first approximate the flow near the boundary by means of a mirror
flow model similas to the one described by Kraichnan4. The boundary layer is
then approximated by a shear layer lying at some distance from the boundary
which is less than the boundary layer thickness, and across which the mean

flow velocity parallel to the boundary changes abruptly from zero to the external
flow velocity. In other words, the mean shear, instead of being distributed
over the boundary layer, is assumed to be concentrated in the plane of the shear
layer.

We assume that the boundary is coincident with the x, =% plane and

construct the mirror flow model as follows: Assume v, X, 1) represents the
turbulent velocity corresponding to homogeneous turbulence. Then, follow-

ing I(n:licl'xm:m,'4 we define new coordinates x* by

= =x ) (5.1)

o x¥=x ,x*
i 1 2

and a new velocity field oy (x,t) by a

u"*(?(’,f) = 2'4‘f [uI x, ) + u'(')?*,t)]

v =27 [u, %,1) + u,ri*,r)] (5.2) 4
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u;(;(.lf) = 2-% [U.z (;0?) - U3(-’:*If)]

Then the velocity field represented by u;’ {X,t) has mirror symmetry about
the plane x, = 0. It is easily verified thot u’i‘(k’,f') satisfies the continuity

equation

p-ovided ui('i’,f) satisfies it, ond aiso that u;‘(?,f) approximates the flow near
the boundary in that u’i' (X,t) and all its even derivatives with respect to X,
vanish on the plane X, = 0. It is also easily verified that the mean square
values of u;* far from the wall tend to the values for the homogeneous field.
At the wall, however, the mecn square values of u'; ond v} ore twice the
values of the respective homogeneous components, whereas the meon square
value of u; at the wall is zero. (For a more detailed discussion of the mirror
flow velocity field, see the above-mentioned poper of Kraichnan's.) Then,
defining R;j('x',')’) to be the velocity correlation for the mirror flow, we have,

from (5.2).

Ry XV =5 R, (K-¥)-R G*=9) R (X-y*) + R s (x* -y*) (5.3)

The mean flow distribution is taken to be a shear layer at X, = G, with the
mean velocity zero for 0< x; < a, and equal to V for x, > a. Reflecting
this flow in the boundary plane we obtain the case of the double shear layer

identical to the one discussed in the previous section. We can then obtain the
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fornula for the mean square fluctuating pressure owing to turbulence-mean shear
interaction by substituting the mirror-flow velocity correlation given by (5.3)

into Equation (4.2) of the previous seclion. Doing this, and noting that
AT RIS, and RUTLR) = RYELFD = - R - -

R;a(—ﬁ_,-r';_"_) . we obtain

2 .
w0600, ~EL f [ 5 - ryti 7 -
n

— -1 -
Rag(—r]._'_-rl'.) + (_.-q )][—lx r|+l ;(a_,.l?-q;-l l'l-

1

(5.9

2|
x|
)
Jo
X}
=L
——
3
Q.
o

Making charges of variables similar to those of Equations (2.17)~(2.19), (5.4)

becomes

——y 2v2 — - —
G = :7/[2R33(§0)-R,3(§+)-R33(§_)]-

U -—-g g, | ,x.'- d dé
' +
l - x._-g+|3

®
]
R |
P
]
i |
]
+
ol
™,
]
s |
X
2|
=}
]
=
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X = g - g xl - g — —
1 | ,
/ — — dié }dc, (5.5
SR N T
where go, §+ , §_, g, &, § §_are as defined previously. Setting

~—

x =X'= (0,0,h) in (5.5 we obtain the formula for the mean square

fluctuating pressure cwing to turbulence-mean shear interaction ot a distance

"h from the boundary:

2\ 2 — — - !
Gy - ;%V /[nm(co)-rgs(g)-R33<c_)]- |

£+8 £

{/[_g+§|2+(h a)? [§2+(hl- ]3/2 i+

T

£+¢, £, —
[|‘§'+‘;“|2 +(h + a)z] /2 [{2 +(h+ a)z] /1

i 5 it Rt
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v — d +
([ + - 2] sz b+ |

£+ & £, —-) -
[ bl
[E+—EIZ+ (h +a)2]3/ [§2+(h -0)2]3/

(5.6)
Setting h =0 in (5.6), and using (A16), we obtain the formula for the mean

square fluctuating pressure at the boundary owing to turbulence-mean shear

interaction, which we denote by (pz >
VWM

S |

™

{(1 - 2c§/c2)[‘ - (i + 5%’)‘*] +
(0 + c%’)"”}t" at, (5.7

where b = 2a. The value of (pr) given by (5.7) is just twice the mean
™

square fluctuating pressure at a point midway between the two shear layers for

the case of homogeneous turbulence, as given by formula (4.10). Then for the

case in which R3 in (5.7) corresponds to isotropic turbulence, (')3” ) is
™

3

equal to twice the value of '<Ca (0)>TM given by (4.11), i.e.,

(o o]
(P 3"2"2V2}b[ e + o) e at -
M

s i v

o Crnirreson Seserin, T




[o.0]
b/ - at (5.9
b

where v is defined as before.

In order to obtain estimates for (pivl\ for an actual boundary layer flow it is
™
necessary to relate the parameters appearing in (5.4, i.e., V, v, b and the
-
correlation length o of the turbulence, to t!/: boundary luyer flow
parameters; namely Ty the wall shear stress, «.d U‘r the friction velocity,

where U:' = 'ro/p. We first assume that thie mean velocily u.tribution in the

boundary layer is of the form

Ule) = V(1-e P (5.9)

where V is the external flow velocity. Differentiating (5.9) we obtain

- L

S(x,) = s,6 %, (5.10)

Py pusded bkl b Dy eemees peaiba) BaMAY  besed boumw 0 coomm ey

where S(xs) is the mean shear, and S = BV is the mean shear at the wall.

We now choose a, the distance from the wall to the shear layer, to be one-third

Nttt h“u‘
1 *

the distance from the wall to the point at which the mean velocity is approx-

1 imately 95 percent of the external flow velocity. Accordingly, by (5.9), we |
choose Ba = 1, or Bb = 2, Kraichnun4 states that (5.10) gives a reasonable
’ i approximation *o the mean shear in an actual turbulen  sundary layer, at least

in that region outside the laminar sublayer which is expected tc give the majc:
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contribution to the pressure fluctuations, if So and B are chosen so that
S0 = |2U_‘,a and B =g. Also, areasonable value of v, according to

experimental evidence, is 1.5U_ . Then, since So = BV, we hove
vV = |2U7, ob =2, v = l.SUT. (5.10)

Substituting (5. 11} into (5.8) we obtain

2 -}!’~ V3 ou? ® 3 ie2, 2y~
[(Pw) ¥ 18v3 pUllb [ 3 +B) T MHR)AE -

T
0

® -4:02 2 .‘5
b/ @ -b)f(g)dCJ . (5.12
b

Since b is twice the correlation length of the turbulence, the second integral
2 r2
on the right hand side of (5.12) can be neglected. Then toking f({) = e ° ¢

and setting ob = 2, (5.12) becomss, after a change of variable,

2 % 2 ® 3 2 -5/2 -4|'|z -I%
[(pw) ] ¥ 18V3 p U n(1+n°) e qu . (5.13)
T™

0

The integrai occurring on the right hand side of (5.13) can be evaluated approx -

imately by various meilicds. One way is to first observe that

e par

® ) :

-5/2 -apn? - -4n? '
f 22140t gy ,_,/ nd(1+0?)7% & dn. ?
0 0
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We can then approximote e T in the interval 0<ng | by the function

1-2n% + q‘. The resuiting integral can be evaiuated by means of tchies to

yield finally
)
2 : :
[<pw)m] ¥ 4.4pU7 - 447, (5.14

In view of the many assumptions end approximations made in the above analysis,
Equation (5. 14) should be considered only a crude, c-der-of-magnitude estimate
of the root mean square fluctuating wall pressure. However, it is of interest to
note that the numerical factor 4.4 appearing in Equation (5. 14) ogrees
reasonably weil with other published esulti; e.g., Kraichnan‘ given a numerical
factor of 6, while resuits obtained by Lilley indicate a numerical factor of 3.1.
Exporimental results of Bul|7 indicate the numerical factor generally lies between

20nd 3,

3?
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6.0

CONCLUDING REMARKS
Although in the preceding sections emphasis wos ploced on finding the meon

squore fluctuating pressure (p’) , the results obtained can alsc be used to

™
coiculote the two-point pressure correlation under vorious conditions; e.g.
formula (2.17) gives the two point pressure coirelation function owing to the
interaction of (not necessarily homogeneous) turbulence with a single sheor layer,
while (2.19) gives the same result for homogeneous turbulence. Analogous
results (formulas (4.2) and (4.3)) are obtained for the double sheor layer. The
case of homogeneous turbulence with scale anisotropy can be included by substi-
tuting the expression for the velocity correlation given by Equation (3.1) into
(2.19) and (4.3). It should also be noted that since the analysis given here does
not involve the time voriable explicitly, the effect of time difference con be
included in the above-mentioned pressure correlations s'mply by assuming that

the velocity correlation Rij appearing on the right hand side of the ahove~-

mentioned equations is alse o function of the time difference.

As was seen in Section 3, departure from isctropy results in a decrease in the
mean square fluctuating pressure in the neor field of o singie sheor layer, whereas
in the for field, anisotropy results in an increase in meon square fluctuating
pressure, In view of Kraichnan's results for the interaction of turbulence with
uniform mean shears, the neor-field effacts of anisotropy are not unexpected;
however, the physical interpretation of the difference in near-field and \ur~field

cffects of anisoiropy obtained here remains uncleor.

.....
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Results obtained 1n S=ctiun 4 for the case of the double shear layer indicate that,
when the separation between the shecr layers is of the order of the correlation
length of the turbulence, interaction between the shear layers (i.e., the effect
of correlation between the fluctuating pressure due to one shear layer and the
fluctuating pressure due to the other shear layer) is significant and results in a
decrease in the mean square fluctuating pressure compared to the value which
would be expected if the shear layers acted independently. This decrease is the
result of the pa ticular velocity profile chosen in the - -ather than being an
intrinsic characteristic of multipie shear layers. The configuration chosen has
mirror symmetry about the x, - X, plane; i.e., U, (-xs) =V, (xs), so that the
mean shear is anti-symmetric about this piane. Thus, in the interaction term in
the expression for the mean square fluctuating pressure or pressure correlation (see
(2.13)), the product of the mean shear at a peint on one shear layer with the
meon shear ot @ point on the other shear layer is negative. If the configuration
is chosen with the mean shear having anti-symmetry about the X, =X, plane, so
that the mean shear is symmetric, then interaction between ihe shzar layers will

result in an increase in mean square rluctuating pressure.

Order-of -magnitude estimates obtained in Section 5 for the mean square fluctuat-
ing wall pressure in a turbulent boundary layer show reasonably good agreement
with other published results. Although this agreement ‘s to a certain extent for-
tuitous, in that the final result is dependent upon certain assumec parameters

such as the distance from the wall ro the shear layer, it is nonetheless encouraging

since it indicates that refinements of the method given in the text might well

4]
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resuit in even closer agreement with other results, both theoretical and experi-
mental. Such refinements might include an ottempt to -oroximate the meon
velocity profile in the boundary layer by several sheor lavers, instead of one as
was done in the text. (It is clear, in fact, since any piecewise ~ontinuous func-
tion can be approximated arbitrarily closely by means of step functions, that any
meon vciocity profile can be approximated os closely as we please by a finite
number of sheor layers. More complicated velocity profiles, such cs the one
which exists near the exit of a jet, might be appraximated using a combination of

shear layers and uniform mean shear; e.g., the velocity profile

U‘\x3)=V' +ax3; x, < 0

Ul(xs)=V2 tax,; Xq >0

where v, # V, + gives a shear layer ai the plane x, = 0 superimposed on uniform
mean shear o.) It should be noted, however, that the degree of computational
difficulty will increase roughly as the square of the number of shear layers chosen,

since interaction between the shear layers must, in general, be considered.

-k
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APPENDIX

It is cur objective here to evalyate the integral

gl §|+§|
VI EEP I

x dt dE, . (A1)

where X = (0,0, h), ?= (€l , §2 , 0),-§.= (€, ,9,0). Equation (A1) can ke written in the

£, £+3, -
I = / n/e - -y, 3/2 dé (A2)
W+£0) R+ T+EY

alternate form

where 'E = (El ’ Ez), -E= (C' . Cz) . It is convenient to consider a somewhat more general

form of (A2); namely

b+, §* 5

R T o, b)= / ' dE, (A3)
- 3/2 - i, 3/3
@+ TR @+[ET
where 1 =(r|', qz), and a, b>0. Then
I, = 10,C; h, b - (Ad)

We now proceed to evgluate 1(7 ,-f; a, b) using a method similar to that given by

Kraichncn3, which is based on a method of Feynmon9. We first write (A3) in the form

—rp

l(-ﬁ:?;ﬁpb)=/%f'('—.’)d€, | (A5)
1\rr




— 2
where r = (b’+|'£’+“ﬁ|‘)5 ; =(az+i ¢ +-Elz)3/ . Now

&P 1Y, T _ lim &P LI Y
Jow ()% - a2 [ )
A

rr

where A is any finite area in (E‘ , 52) space, which in the limit as A~ is to in=lude

all of (§l » &,) space. Then, setting

- -
LG ={ = dF . (A9
J re’
5 A
&
we have
5
“’ g lim azlA
; I@Siab = 7 v (A7)

Making the change of variable ¥

-£.+—r|’ , andsetting T = 7 --E, (¢ 6)

becomes

A rr

where r = (b2+uz)i, r'= (az+|'0'-z 2)’" ,ond A' = A+ . Then satting
lkfz') = IA(" ,-E) we have

ey pwaa) e PN SR WM M) W Mued b Veeesi  eeed bRy buen S e

; 1@ en -- "™ Lo, (a9
L g~ ' 2

4 A= azl
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g - Y - e —

where
L@ = — v
rr!
A!
Utilizing the identity
®
| - 2 dr
rr' N A iy 24
we can write
2 ® d |
1'(‘{).—._/[ —T 4T - (A10)
A " AP
A0

Substituting for r and r', and interchanging the order of integration, (A10) can be

written
2 [© 4 4
XES =._/ / d . (A1)
L] 2 2
1+ I - 2, 1242 2

0 AT . 2 + 9 LA 2

2 2
1+ 1+ (l+-rz)2

If we now choose A' to be a circle of radius R centered at Z'/(1+7°) we can carry cut

the integration over A' tc obtain

(- o}
1;\(':’)=z[ [logfz‘+ |og(l+C2/R2)-logcz]-l-£l;- ' (A12) f
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where C? = o+ by + —I z2 . Now the first term on the right hand side of

2 2
1+« (]+Tz)

(A12) will give no contribution to I(Y), € ; a, b) since its derivative with respect to

z is zero. Also, the second term on the right hand side of (A12; will not centribute

-—

to I{7W, §; o, b} since it vanishes as R = . Equation (A9) then can be written

(o0}

(7,€ a, b= 2 -9; lo 2 2
2
azlo 1+ (1 + 12 T+

2 2 2
gdz+b7+ T 2 dr . (A13)

The right hand side of (A13) can be evalucted as follows: First differentiate once under

the integral sign with respect to z, to obtain

-~ 9 @ <2 dr
17,8;a,b)=4 3—2-2‘/ > (A14)

i (1+ 2P +bird)+ 222 1++

The integral on the right hand side of (A14) can then be evaluated by means of contour

integration to yield

)
/ 12 dr -
; 1+ 1) +B272) + 7822 1+ 42

("/222){1 -(a+ b)[(a- b)2+zz]i [(a2+ b+ 22 - 40252]-£},

so that, differentiating again with respect to z,, (A14) becomes

48




R )
¢

I, 8 a,b) = 21!2-2(]*222‘/::2);] -
(@ +b) [(ﬂ-b)z'*zz]i [(az+ b2+z2)2-4ozb2]'5}-
Zﬂ(a+b)zfz-2{[(a- b)? + 22 ]"’ [(az+bz+ 12)2.. ol bt ]'% -
2(u2+b2+12)[(a_b)2+z2]% [(°2+bz+zz)z_ 4azbz] _3/2} .

(A15)

—

wherez =—r|’-_§.. This is the desired expression for I(7}, $;a,b). Then setting

a=b=hand § =0 in (A15), we have, from (Ad), the desired expression for lo:

I, = 2nt™ ;(1- 282 /87) [1 - (1+ c2/4h2)'*]+

(Cf/4h’)(1+ §2/4h2)'3/2} . (A16)
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